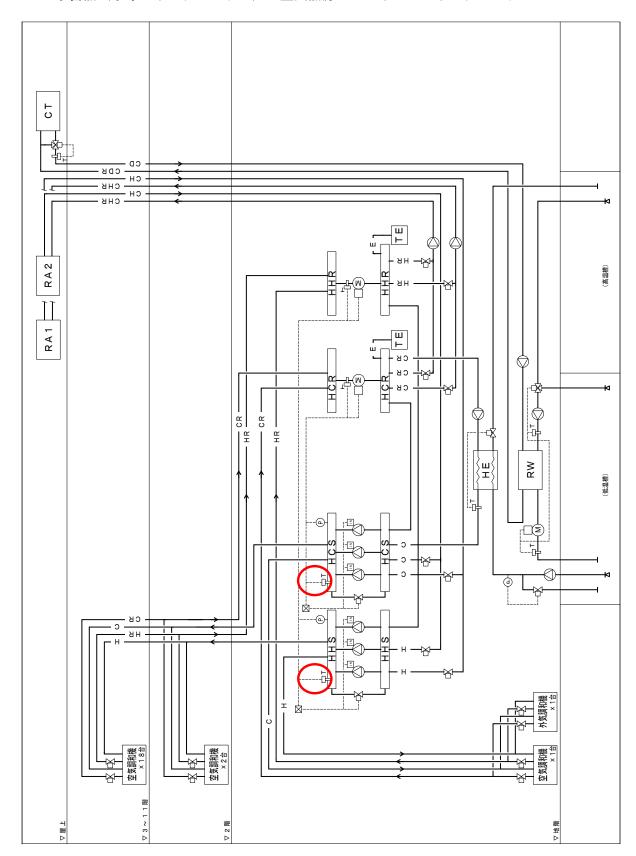
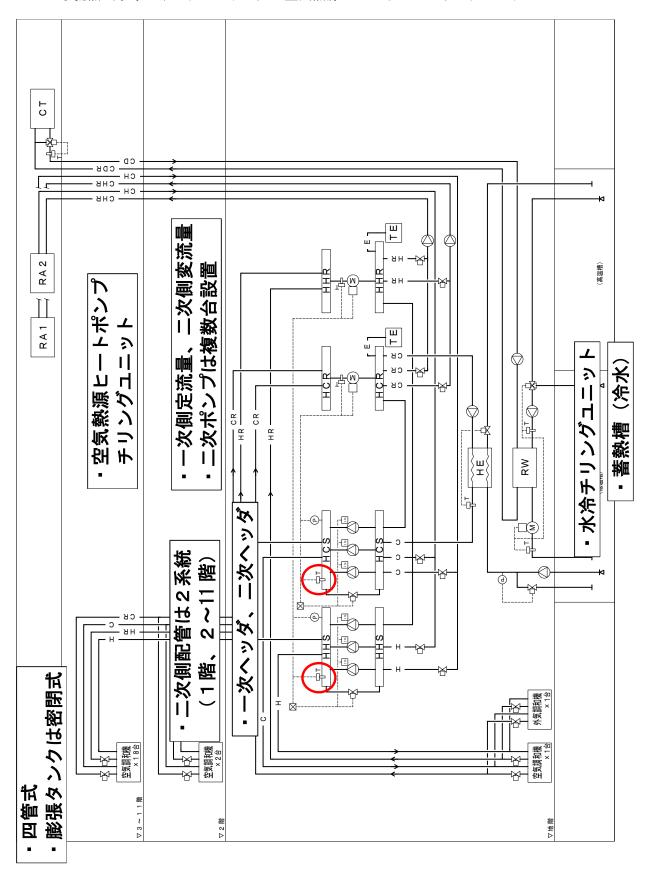
令和 2 (2020) 年 建築設備士第二次試験受験対策講習テキスト 正誤表

頁	項目	誤	正
41	(4)過去の類題 □平成 12 年	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	…蓄熱槽の <mark>容</mark> 量の記入欄の…
41	□平成 12 年【解答例】 蓄熱槽容量	4 <u>80</u> m ³	478m³
61	予想問題-3	…全ての室は告示第1436号に規 定する内装制限を満足している ものとする。	…全ての室は告示第 1436 号に規 定する内装制限を満足している ものとし、かつ高さ 31m 以下の部 分にあるものとする。
61	予想問題-4	(可能パーティションで…	(可動パーティションで…
65~68	配管系統図	温度計の記入漏れ	⇒別紙差替え
69,321	過去の解答例 (平成 28 年度)系統図	② RW 上丁 (低温槽)	温度検出器と制御線の追加 (水冷チリングユニット左側の熱量演算器付流量計構) ② 「「「「「「「「」」」」 RW 「「「」」」 ③ (低温槽)
70,71	配管系統図	温度計の記入漏れ	⇒別紙差替え
82	7. 加湿量	…外気量 (m³/h) ×全熱交換器効 率	…外気量 (m³/h) × (1 -全熱交 換器効率)
86	6. 加湿量	…外気量 (m³/h) × <u>全熱交換器効</u> 率	…外気量 (m³/h) × (1 -全熱交 換器効率)
129	例題 ②の給水管 サイズ	表 <u>1-1b</u> ···→表 <u>1-1a</u> ···	表 2 − 3 b···→表 2 − 3 a···
129	例題 ©の給水管 サイズ	···→表 <u>1-2</u> ···→表 <u>1-1a</u> ···	···→表 2 - 4 ···→表 2 - 3 a···
129	例題	···→表 <u>1-1a···</u>	···→表 2 — 3 a···
164	(2) 今年度の予想 問題参考解答例 ①	…同時開放個数は <u>10</u> 個…水槽容量は <u>16</u> ㎡、…必要流量は <u>900</u> L/min となる。	…同時開放個数は11階以上で15個…水槽容量は24㎡、…必要流量は1350L/minとなる。
256	表 5-2 記号:C 室指 数:3.0の範囲	2. 75~3. <u>4</u>	2.75以上~3.5未満

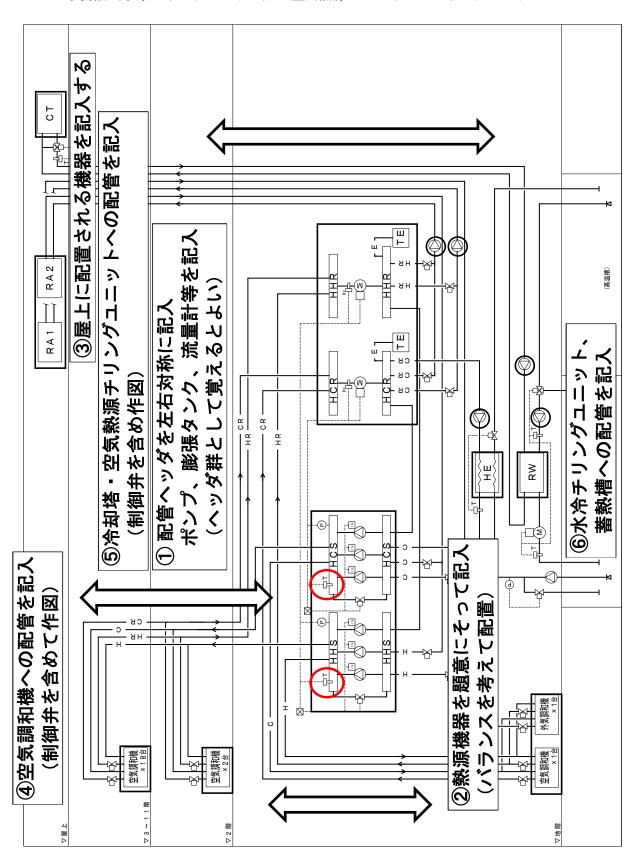

頁	項目	誤	正
271	2-7. 高圧変流器の 仕様確定	(10 行目) …過電流強度は <u>125 倍</u> を用 いる。	…過電流強度は <u>150倍</u> を用いる。
271	2-7. 高圧変流器の 仕様確定	未掲載のため、12 行目下部に追 記	(定格過電流強度は JIS C 1731-1 に規定があり、40、75、150、300 倍のいずれかから選定する)
273	3-1. 電圧降下計算 出題例(令和元年):	…ケーブルの交流導体抵抗は 1.08X/km、リアクタンスは 0.103X/km とする。 」	…ケーブルの交流導体抵抗は $1.08 \Omega/km$ 、リアクタンスは $0.103 \Omega/km$ とする。 」
279	表 5-13 変流器の容量	12 <u>5</u> A	120A
280	図 5-31 受電用 VCB 二次側変流器	12 <u>5</u> /5A	12 <mark>0</mark> /5A
341	変圧器:蓄熱用動力: 算定根拠	$350 \text{kW} \div 3.5 \div 0.8 = 125 \text{kW}$	$350 \text{kW} \div 3.5 \div 0.8 = 125 \text{kVA}$
341	(2)年間損失電力量:	負荷損=3,200W×(0.42×10h	負荷損=3,200W×(0.16×10h
341	算定根拠	+0. <u>12</u> ×14h)×···	+0.01×14h)×···
357	(1)送風量	$\cdots = 6,480 \text{m}3/\text{h}$	···=6,490m3/h
357	(2)冷却コイルの入口	…還気(図中②)4,830m3/h の混	…還気(図中②)4,840m3/h の混
331	空気の比エンタルピー	合	合
357	(2) 冷却コイルの入口	\cdots +4, 8 $\tilde{3}$ 0m3/h \times \cdots	\cdots +4,840m3/h \times \cdots
331	空気の比エンタルピー	6,480m $3/h$	6,490m3/h
	(3) 再燃コイルの加熱	比エンタルピー差から求めると	比エンタルピー差から求めると
357	能力	$6,480$ m $3/h \div \cdots$	6, 4 <mark>9</mark> 0m3/h÷⋯
331		温度差から求めると	温度差から求めると
		6,480m $3/h$ ÷…	6, 4 <mark>9</mark> 0m3/h÷⋯
357	(4) 冷却コイルの冷却 能力	6, 4 <u>8</u> 0m3/h÷⋯	6, 490m3/h÷⋯
358	空気線図 送風量	6, 480m3/h	6, 490m3/h
250	【演習】	6.9kW×3,600kJ/kWh	6.9kW×3,600kJ/kWh
358	温水量(再熱コイル)	×1.0kg/L	$\cdots \times 1.0 \text{kg/L} \times 60 \text{min/h}$
375	(2)年間損失電力量:	負荷損=2,000W×(0. <u>12</u> ×10h	負荷損=2,000W×(0.01×10h
	算定根拠	+0.42×14h)×···	$+0.16\times14h)\times\cdots$
378,412	単線結線図 受電用 VCB	7. 2kV <u>4</u> 00A	7. 2kV 600A

頁	項目	誤	正
406	H30 年 第 3 問	チーズ記載例	⇒別紙差替え
410	変圧器:蓄熱用動力: 算定根拠	250kW÷3.5÷0.8=89.28kW	$250 \text{kW} \div 3.5 \div 0.8 = 89.28 \text{kVA}$
410	変流器:算定根拠	…定格過電流強度 1 <u>25</u> 倍を用いる。	…定格過電流強度 150 倍を用い る。
451	令和元年度 第2問	選択問題の系統図解答例	⇒別紙差替え
457	変流器:算定根拠	…定格過電流強度 1 <u>0</u> 0 倍を用い る。	…定格過電流強度 150 倍を用い る。
459	単線結線図 受電部 CT 値	1 <u>5</u> 0/5 A	1 <mark>2</mark> 0/5A

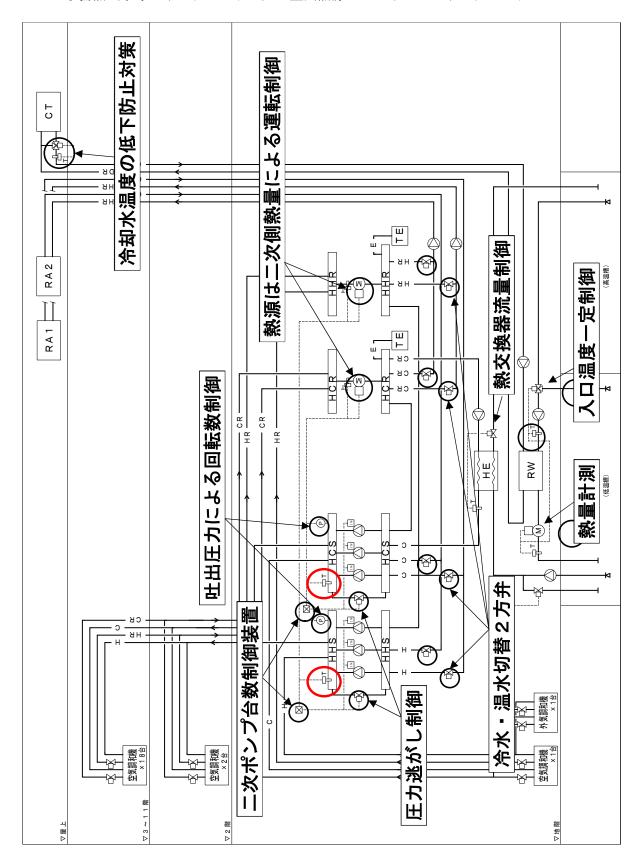
【注】正誤表は8月6日現在のものです。追加修正がある場合は、適宜、テキスト表紙に記載の主催 2団体の各ホームページに、更新版を掲載致します。


P.65 の差替え

解答例(本年度予想問題:シェアオフィスのある事務所ビル)


P.66 の差替え

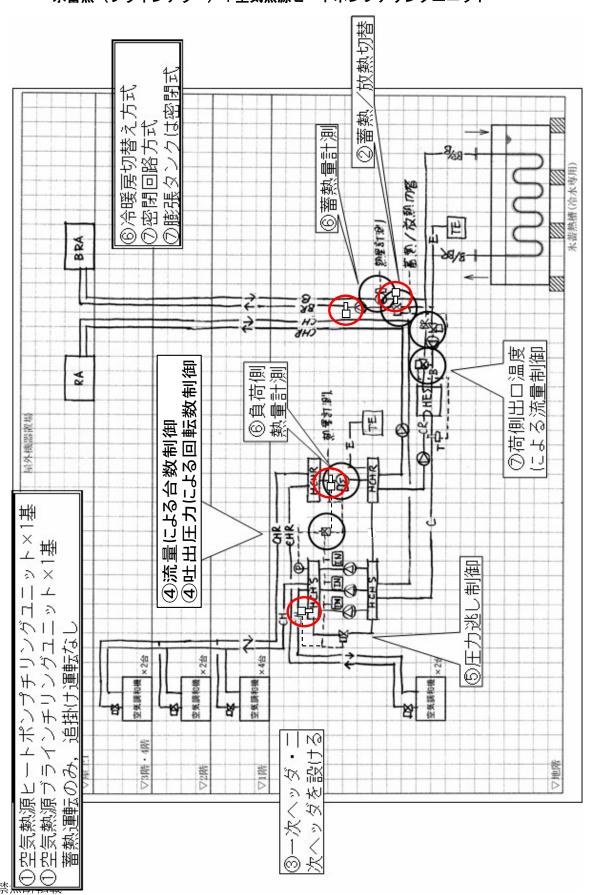
記入上の注意(本年度予想問題:シェアオフィスのある事務所ビル)


P.67 の差替え

作図要領(本年度予想問題:シェアオフィスのある事務所ビル)

P.68 の差替え

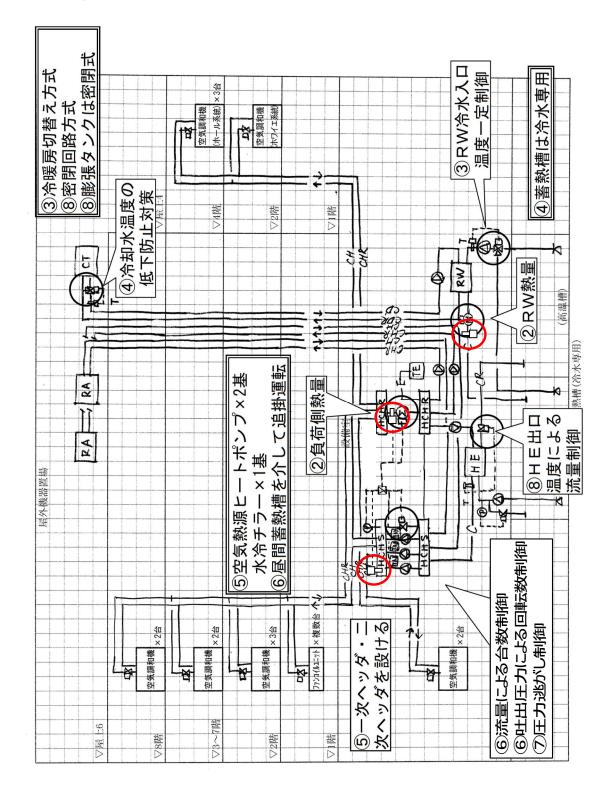
制御項目(本年度予想問題:シェアオフィスのある事務所ビル)

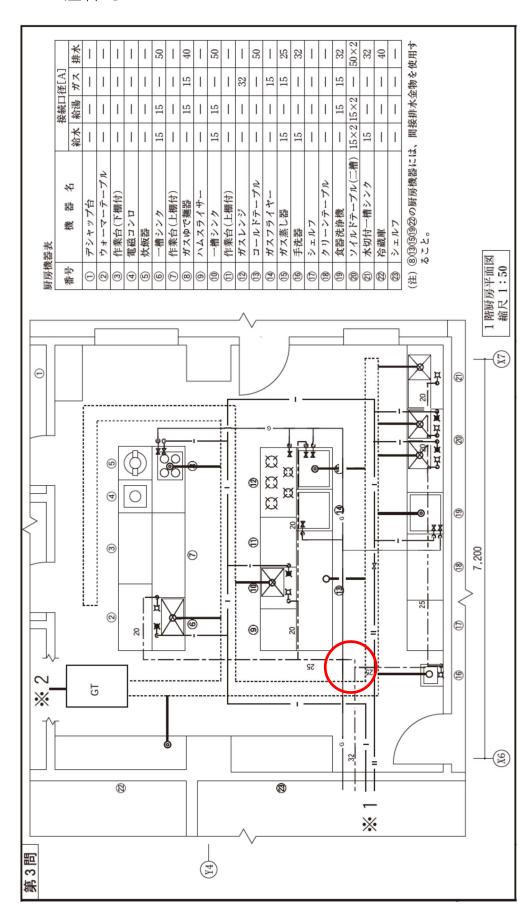


P.70 の差替え

過去解答例(平成21年度)

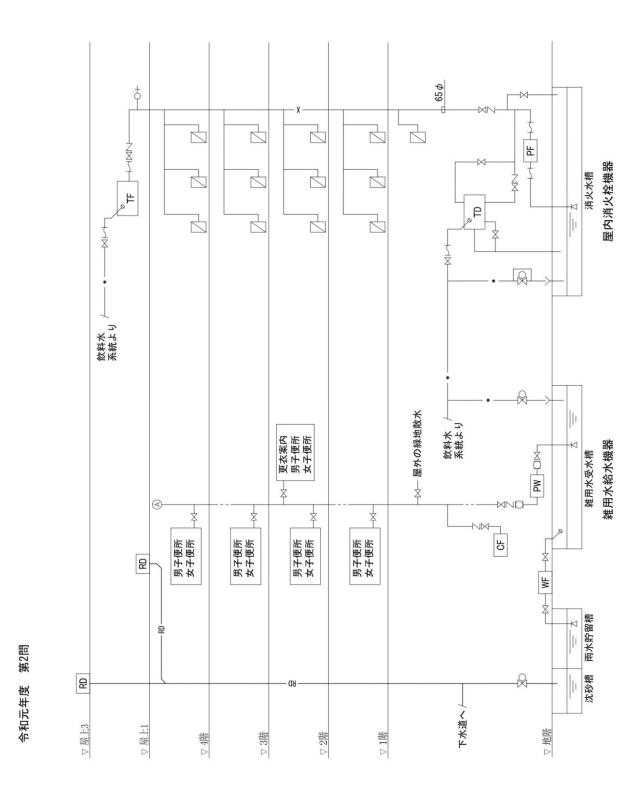
「地方都市に建つ市立図書館」


・・・氷蓄熱(ブラインチラー)+空気熱源ヒートポンプチリングユニット


P.71 の差替え

過去解答例(平成20年度)

「市民ホールを併設した市庁舎」



P.406 の差替え

H30年

P.451 の差替え

